Beneficial effect of nimodipine on metabolic and functional disturbances in rabbit hippocampus following complete cerebral ischemia.
نویسندگان
چکیده
We investigated the effects of intravenous application of nimodipine on the neurophysiologic, biochemical, and morphologic consequences of 15 minutes of global cerebral ischemia in seven rabbits. In vivo dialysis of the hippocampus was used to determine changes in extracellular concentrations of extracellular calcium and amino acids and blood-brain barrier permeability. Ischemia without treatment produced a rapid disappearance of electroencephalographic activity, a decrease in the concentration of extracellular calcium, the release of neuroactive amino acids, and leakage of methionine to the tissue fluid, plus a significant increase of the blood-brain barrier permeability to fluorescein. Except for permeability and electroencephalographic activity, these parameters normalized during 45 minutes of recirculation; permeability and activity failed to normalize completely during 3 hours of recirculation. After 3 hours of recirculation, morphologic changes in the CA1 hippocampal area were observed. Treatment with nimodipine significantly enhanced electroencephalographic activity recovery and normalization during recirculation, reduced the decrease in extracellular calcium concentration, and prevented the increased permeability of the blood-brain barrier. Nimodipine protected the CA1 area from early morphologic changes and reduced leakage of methionine from brain cells. The beneficial cytoprotective effect of nimodipine, probably related to normalization of calcium homeostasis and blood-brain barrier permeability after ischemia, may reflect both vascular and cellular sites of action.
منابع مشابه
Effect of nimodipine on cerebral functional and metabolic recovery following ischemia in the rat brain.
Whether the calcium entry blocker, nimodipine, prevents the increase in the concentration of free fatty acids and metabolic disturbances during ischemia and promotes functional and metabolic recovery after recirculation were examined. Severe forebrain ischemia in rats was induced by four-vessel occlusion with mild hypotension. After 30 minutes of ischemia, recirculation was started by removal o...
متن کاملNeuroprotective effects of Withania coagulans root extract on CA1 hippocampus following cerebral ischemia in rats
Objective: Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. The beneficial effects of antioxidant nutrients, as well as complex plant extracts, on cerebral ischemia-reperfusion injuries are well known. This study was conducted to determine the effects of the hydro-alcoholic root extract of Withania coagulans on CA1 hippocampus oxidative damages followin...
متن کاملEffect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat
Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...
متن کاملLocal nimodipine application improves early functional recovery in the rabbit hippocampus after 15-min global cerebral ischemia.
Microdialysis was used to apply 10 microM nimodipine to the hippocampus of rabbits submitted to 15-min global cerebral ischemia. Analysis of dialysate allowed determination of changes in extracellular fluid concentrations of calcium (Ca2+e) and amino acids and in blood-brain barrier (BBB) permeability to fluorescein. General physiological parameters and EEG were recorded throughout the experime...
متن کاملBad gene expression following effect of coenzyme Q10 on Wistar rat hippocampus with cerebral ischemia
Background: Q10 coenzyme is a potent antioxidant in the mitochondrial membrane. Releasing the oxygen free radicals occurs in the cerebral ischemia. Using Q10 coenzyme causes strength against oxidative after injury of cerebral ischemia during reperfusion. Also CoQ10 plays an important anti-apoptotic role to reduce Caspase 3 as a key enzyme neuroprotective in apoptosis. According to the sensitive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Stroke
دوره 20 1 شماره
صفحات -
تاریخ انتشار 1989